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ABSTRACT

A model has been developed for the prediction of the time dependent

p.opertias of the gas surrounding a water droplet under irradiation by a
high intensity laser beam. The basic phenomena included in the model are
absorption, heating and vaporization in the droplet and convection, thermal
conduction and diffusion in the gas. The model assumes volume absorption
by the droplet, a constant pressure gas, and that the initial vapor velocity
is much less than the local sound speed. The conditiors under which these

i assumptions are appropriate have been identified. A number of preliminary
calculations are presented.
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AEROSOL PROPAGATION EFFECTS

I. INTRODUCTION

The Aerosol Propagation Effects program is concerned with the
prediction of laser beam degradation resulting from the interaction between
a high power laser beam and atmospheric aerosols. The particular emphasis
of this program is on the absorption, scattering and thermal blooming of a
DF laser propagating through an atmosphere contaminated by hygroscopic
aerosols. The overall program includes a review of the properties of
atmospheric aerosols, a study of the atmospheric heating resulting from
aercsol absorption of laser energy and first order predictions of the laser
beamnr. thermal blooming resulting from this atmospheric heating.

The particular problem addressed in this mid-program progress
report is the prediction of the space/time variation in the temperature and
water vapor distributions about a pure water droplet irradiated by a laser beam.
This problem is relevant to beam propagation through hygroscopic aerosols
on humid days. Effects resulting from the varying properties of real aerosol
solutes and original Aitken nuclei will be discussed in the final report.

The description of the general problem and derivation of the governing
partial differential equations for the droplet and surrounding gas will be given
in Section 1I. Specific '"'steady state'' and time dependent computer solutions of

the problem will be presented in Section lII. The conclusions and future

direciions of the study are presented in Section 1V,




II. MODELING

In the problem under consideration the aerosol droplet absorbs
energy and is heated., As the droplet temperature rises above ambient
the droplet condi:cts heat energy to the surrounding air and undergoes surface
vaporization. The vapor leaves the droplet with a directed velocity and a
pressure wave is induced in the surrounding gas in response to the mass and
heat addition. (If the rate of energy absorption were sufficiently large the
droplet would "explorie', creating a shock wave; however, the present analysis
will be limited to laser intensities and droplet sizes such that the directed
velocity of the vapor leaving the droplet surface is much less than the local
sound speed.) An additional feature which must be included in the analysis is
the fact that the droplet radius decreases with time due to mass loss resulting
from vaporization,

A. Gas Equations

A number of approximations have been made to simplify the solution
of this problem. The most prominent of these is that the gas is taken to be a:
constant pressure. As pointed out above, pressure gradients are induced in
the gas because of the mass and heat addition from the droplet. However, if
the pressure equilibrates on a time scale fast relative to the times for conduction
and diffusion then the heat and mass transfer may be assumed to be occurring
in a constant pressure gas. The characteristic time for water vapor to diffuse

a distance L in air is approximately

~ 2
TD L°/D (1)

where D is the diffusion coefficient. The characteristic time for heat conduction

in air is

T ~ sz cp /kA (2)
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'| ~vhere p is the density, Cp the specific heat and kA the thermal conductivity
’ A

of air. Lastly, the charzcteristic time for pressure equilibrium is

]
. '!'p ~ I[./c (3)

where c is the sound speed in air. Evaluating these expressions with

D = 0.24 cmz/sec, Ly 1.2 = 10“3 gms/cc, Cp =0.24 cal, /gm-oK,

kp = 6.2 x 10"5 cal. /em-sec-°K and ¢ ™ 3 x 10” cm/sec results in

e o W WE T (4)

for L > | um. The characteristic droplel sizes of interest in this work
are a few tenths ¥m to 50 Uim, and for the typical atmospheric aerosol
distributions of interest the average spacing between droplets, which would
be the heating range of interest, is approximately one mm. Thus, it would |
appear that the approximation of a constant pressure gas is reasonable. ‘
Another simplifying approximation used is that the gas properties are
taken to be those of clean air. Although this approximation would suggest that
the defining equations would not be valid for high water vapor concentrations i
this is not the case, as will be demonstrated later in this section. Also, the
coefficient of thermal conductivity, kA and the product of the coefficient of

diffusion and number density, DN, were taken to be constant. These quantities

vary by < 15% over the temperature range of interest, 0 - 100°C.
The last simplifications concern the fluid mechanics. The processes
considered in the analysis are thermal conduction, diffusion and convection.

The phenomena of thermal diffusion (Soret effect) and thermo-diffusion

o o (N e

(Dufour effect) have not been included. Generally, these processes are insig-
nificant in flow fields of the type under consideration; nonetheless, the validity
of this assertion will be determined from the computer results. Furthermore,

consideration must be given to gravitational effects. As the gas surrounding
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the droplet is heated it will rise. The characteristic time for the gas to rise

a distance L is:

Tg - (ZL/g [Ao/o]>l/2 (5)

where g is the acceleration due to gravity, 980 cm/secz, and Ap/p is the
fractiona: difference in density between the heated gas and the surrounding
medium., A strong lower bound or 'Tg corresponds to Ap/p ~ 0.3. Even

in this limit it can be shown that

for L less than one mm. Of course this effect might have to be included for

leng time (t 2> 0.1 sec) irradiation. However, in this case it would perhaps

be more appropriate to treat the aerosols as an aggregate rather than individuaily.
Within the framework of the above-mentioned approximations, the general

relationships describing the system are
a) Conservation of mass

- -
Bp/0t 2 <V~ (PV) (6)

-
where V is the gas velocity

b) Euler's equation
-»> - =) = =
OY/es s c Vo VW (7)
c) Conservation of energy

2 - - 2 -+
o(l/2pV +pCVT)/0t = -qg"° [OV(l/ZV +CpT)-kAVT] (8)

where C is the specific heat at constant volume




and

d) The diffusion equation
= = -»
0p /3t =9 * (DVP_-p_ V) (9)

where P, is the water vapor density and D is the HZO-air diffusion

coefficient,

If the droplet is heated uniformly (see Section B), the system is
spherically symmetric and it can be shown that the ordered kinetic energy
terms drop out of the equations under the assumption of constant pressure.

The relevant gas equations for r > R, where R is the droplet radius, are

kkAAT . "
d3T/0t = - VOT/Or + (r dT/dr), (10)
2 dr
r Cp PMA
A
DX /Bt = - VB [or + RIADN) 22X /o1), (1)
v v 2 Dr v
Pr
kk A
d
dV/dr = -2V/r + A (2 dT/or), (12)
Z Or
r (‘p PMA
A

where k is Boltzmann's constant, A is Avogadro's number, P is the total
pressure taken as one atm., MA is the molecular weight of air, N is the
total number densi.y, and XV is the mole fraction of water vapor.

These equations have been formulated in terms of number density rather

than mass density, since in a constant pressure flow of two gases with different

molecular weights the quantity NT, rather than P T, reriains constant. As
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mentioned earlier, these equations were derived under the assumption
Xv << 1. In reality, the quantity C,, MA should be replaced by the
A
expression

CP MA (l-XV) + CP vav
A v

where the subscript v refers to water vapor, and the diffusion coefficient should
be replaced by that for full binary diffusion. However, over the temperature
and water vapor ranges of interest in this problem these latter two quantities
are reasonably constant and well represented by CPA M, and D, respectively.
Thus Eqs. (10)-(12) are approximately valid for water vapor concentrations
approaching unity.

B. Droplet Equations

In the present analysis the temperature field across the droplet has
been taken to be uniform. As long as the laser radiation is absorbed volumetrically
by the droplet, this approximation is reasonable until the droplet temperature
approaches the boiling point of water (see Section HII). The absorption co-
efficient of a water droplet is a complex function of droplet radius, laser
wavelength and the complex index of refraction (see for example Ref. 1).
However, for 4 m radiation liquid water has a bulk absorption coefficient,
a, of ~ 100 cm-l, and it can be shown that for these conditions water droplets
of radius < 50 Um undergo volume absorption. (The general relationship for
the absorption coefficient of a water droplet may be found in Ref. 3 and
references therein.)

The basic equaticn connecting the droplet and gas dynamics is conserva-

tion of energy in the droplet.




4/3vR3Ia 4/3m R3 pD (@

dT_/dit
PD D

+ am R kA(-or/orl ) (13)

R

> M
\4
+ m —
4 TR AHV F (N V) ‘R

The LHS of Eq. (13) is the rate of absorption of energy, where I is the laser

intensity, and the RH{ represents the energy disposition into droplet heating,
conduction and vaporization respectively. The quantity AHV is the change in
enthalpy required to proceed from liquid to gaseous state and the subscript D
refers tc droplet properties. Note that the temperature is continuous across
the droplet surface; i.e. T =T (R). The terms involving the ordered kineti¢

D
energy of the vapor are negligible for the present considerations and have heen

left out of Eq. (13).
The vapor concentration at the surface of the droplet has been related to

the droplet temperature by the Clausius-Clapeyron relationship,

i dln X AH
1 v

aT . R (14)

P v

where Rv is the ideal gas constant per unit mass of water vapor. It has been

4 3 ; : :
demonstrated  that this relationship properly describes the surface vapor pressure
of a water droplet when the vapor velocity is less than the sound speed. In the

preseat analysis Eq. (14) has been used in its integral form

(15)
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where the subscript ® refers to ambient conditions. Eq. (15) is derived under
the assumption that A Hv is a constant. Indeed A }lv varies by less than 10%
between 0 - 100° C and has been taken to have the constant value of 585cal/gm.

The last equation connecting the droplet and gas behavior is the con-
servation of mass of the vapor. If a spherical shell of thickness L R is
constructed about the droplet, then it is required that the rate of mass loss of
the droplet be balanced by the rate of increase of vapor within the shell plus the
rate of vapor leaving the exterior of the shell. With some straightforward

mathematical manipulation this leads to the relationship

(NV) = - (1-X_(R) )'l DN cxv/cr . (16)
R R

C. Effect of Varying Droplet Size

So far in the analysis the effect of decreasing droplet size has not Leen
considered. This effect can be uncoupled because the rate of change of droplet
size is small compared to the rate of change of the gas paran.eters (because of the
large difference between liquid and gas densities). Of course, it has been
implicitly assumed that the time varying, rather than initial, value of R will
be used in the solution of the equaticns.

The governing equations have been recast in terms of the variable
Z = R{t)/r (17)

In terms of this variable the equations may be written as

|
2T/3t = R @z - z dr/dy dT/d 2

kk, A
A % %5 3
+C BN TR v o

/2 7° (18)

B N T T RN TTRNTTR RS,



R (Qz4 - Z dR/dt) d }:v/b Z

Q = v/z2

=~

The transformed boundary conditions at r = R (Z

-2
3 k OT/02Z
R F /0 2Z

kT DN
P

-1
[l -X (Z=l)] 0X /0Z
v v
Z=1

and the Clausius-Clapeyron relationship, Eq. (15).




HI. PRELIMINARY CALCULATIONS

No analytic solution has been found for the system of Egs. (15),
(18) - (24). A computer program has been developed for their numerical
evaluation which employs a fully implicit Crank-Nicolson finite difference
scheme. A complication in using tae 7 co-ordinate is that a constant grid
size in Z space results in a limited number of grid points at large r, where
the solution may be most inter esting. This complication has been circum-
vented by modifying the finite difference scheme to allow for a change in
grid spacing at small /.. In the present mode of operation the grid spacing
tor 0.0 < 2 € 0.05 is an order of magnitude finer than that for 0.05 < 7
< 1.00.

The computer code is now operational and a number of preliminary
calculations have been performed. However, these are insufficient in a
number to provide an overview of the problem. A "steady state' analysis
of the equations has simultaneously been perfornmed in order to predict
the effects of varying fundamental parameters such as particle radius and
laser intensity.

A. Steady State Solutions

In the limit where the velocity term in Eqs. (18) and (19) can be
neglected, the equations effectively uncouple, and it can be readily demon-
strated that the zteady state solutions for JAT( =T - Te ) and

N S Ry ) scale inversely with r, i.e.,
v \% V o

AT(r) = (R/r)AT(R) (25)

and

AX (r) = (R/r) 3X (R) (26)

Indeed, even the time dependent solutions, whiclk may be found in standard

-1
texts (for cxample, Ref. 5) vary approximately as r for r ~ R, Thus,

o e




in the limit of low velocity the gradients apg ‘aring in the equation for drop-
let energy conservation, Eq. (23), may be evaiuzted by use of Eq. (25) and
(26).

If this is done, use of Egs. (15), (23) and (24) results in

2
d(A T )/dt = 3 R°1a _ i
(A Tp) S { - k, 8T,
*p*p
D
AH M P }
- DN(1 - X_(R)) (X_(R) - X_ ) (27)
where
AH, AT,

X (R) -X
v

X {exp[ ] -1 }
P s Vs RV(ATD+ T )Te

Although this differential equation is separable, it affords no simple analytic
solution. One feature of interest is the maximum value of ATD which is
reached when the time derivative is zero. Equation (27) in this limit re-

duces to a transcendental equation for 4T which may be evaluated

D-max
as a function of the parameter R"1c . The solution to this equation is shown
. : \ 2

in Fig. 1 over a range of 5 orders of magnitude in the parameter R Ia.
Shown for comparison are the predicted maximum droplet temperatures

for the related cases of '"heat conduction only' and ''vaporization only''.

These calculations were performed for initial conditions of T, = 2930K,
X . Biw W
Voo 2
Note that for the full range of R"11 shown the 4 TD s predicted

for the case of heat conduction alone is significantly higher than that pre-

dicted when both heat conduction and vaporization were included. On the

M=
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Fig. 1 Maximum Increase in Droplet Temperature vs. R Ia., Also

shown is the fraction of absorbed energy lost to heat conduction
and the predicted variation in temperature across the droplet.



other hand, the predictions for the case of 'vaporization cnly' are relatively
close to the full solution. The reason for this is that the major portion of
the absorbed energy goes into vaporization rather than heat conduction, This
is shown explicitly in Fig. 1 where the fraction of the absorbed energy whicl
is lost to heat conduction is plotted vs. RZI a. For low Rzlg thits fraction
asymptotes to ~ 0.3, and falls off rapidly with increasing Rzla . This

rapid fall-off occurs as the droplet temperature approaches the boiling

point. This is because the vaporization rate increases exponentially in this
region, whereas the rate of heat conduction approaches a constant, The
relative value of this fraction is determined by the ratio of the last two

terms on the RHS of Eq. (27). For small ..\TD e this ratio reduces to

2
’ : k R T "A(l-X
Power into heat conduction _ A v o ( V o )
Power into vapu *ization

X .DN(AH )M
4 v v

Ve

~ 0,43 (28)

in agreement with the asymptotic value shown in Fig. 1 (i.e., 0.43/1.43=0.535).
It should be pointed out that as the droplet temperature approaches the
boiling point the convective terms left out of the steady stite analysis become
more important and convective heat transfer might dominate conductive heat
transfer. The steady state equations including convection are more compli-
cated, but can be analyzed. A discussion of convective effects will be in-
cluded in the final report.
The fact that vaporization dominates heat conduction as an energy
loss mechanism allows an approximate analytic formulation for several of

the variables of interest in the problem, In particular, in steady state it

can be readily shown from Eq. (27) that the rate of mass loss from the




droplet can be expressed as

dm/dt = - 4/3 !rR3Ia/A H (29)

or in terms of the droplet radius

dR/dt = -Rla/(3 4 I**Iv pD) (30)

From Eq. (30) it can be seen that thc characteristic e-folding time for drop-

let radius is

TR = 3AHVOD/I’1 (31)

which is inversely proportional to I o and independent of initial particle

size. Lastly, the vapor velocity at the droplet surface is given by

V(R) = MARI(I/(3MV p A Hv ) (32)

Note this latter quantity scales as RIa rather than Rzl'x. and thus is Jess
sensitive to changes in radius than the droplet temperature.

A last point before leaving the discussion on steady state solutions
concerns the importance of temperature gradients within the droplet. If
one considers vo'ume heating followed by heat conduction as the only phen-
omenon occurring within the droplet, the defining steady state energy

equation becomes

4/31’rr31a = . 4TTr2 kpy dT/dr (r~ R) (33)

P Tpp—




where kD is the coefficient of thermal conductivity of liquid water, taken

-3
as 1.4 x 107~ cal/cm-sec—K. Eq. (33) requires that

R2 la

6 kD
where the subscrips C and S refer to conditions at the droplet center and
surface, respectively, This temperature variation is also shown in Fig. 1
and can be seen to be significantly lower than / TD-max until the droplet
approaches the boiling point. Of course Eq. (34) is not realistic in that
region since it would require the droplet to superheat, In reality, vapor-
ization would occur within the droplet and original nuclei effects, etc. could
be quite important. In any event, it is clear that the approximation of a
constant temperature field across thc droplet is not approptiate at larue
values of RZICJ..

B. Time Dependent Solutions

The fuli finite difference scheme has been exercised for a limited
number of cases. As an cxample of the results, droplet temperature his-
tories vs. time are shown in Fig. 2 for an Ia of 2.5 x 105 cal/cc-sec
and two initial particle sizes, R =3, 10um. Note that the droolet tempera-
tures rapidly rise to a peak value and then slowly decay. This decay results
from the decrease in droplet radius with time. The radii of both the 3 nd
10 um particles decrease by ~20% in 2 msec and exhibit a characteristic
c-folding time as given by Eq. (31). The calculated droplet temperatures
from their peak values onward are in good agreement with the steady state
predictions shown in Fig. 1.

Examples of the gas radial temperature distributions for several
configurations are shown in Fig. 3. Curves C and D are for the same
case, R =3udm, Ia = 2.5x 105 cal/cm3-scc, at two different times,
Note that the profiles scale approximately inversely with r until large r,

where they drop off more rapidly. At small r the temperature profile is
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Fig. 2 The Rise in Droplet Temperature Over Ambient vs. Time for

Two Different Droplet Sizes.
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Fig. 3 Gas Temperature Profiles vs. Radius for Several Configurations.




lower at the longer time. This is because of the droplet cooling which

occurs as a result of decreasing droplet size. At large r the situation is
reversed since the gas temperature in that region is still being driven up-
wards towards an r-1 distribution. The characteristic time to approach
this distribution at any distance r is given approximately by Eq. (2), and
is independent of the intensity of the incident irradiation.

Curve B is a similar calculation for a 10 um particle, Ia = 2.5 x 105
cal/cc-sec, at a time of 2 msec. Once again, the profile scales approxi-
mately as r-1 for small r. Shown for comparison as curve A is another
calculation for a 10 u droplet “.ith an Io cof 2.5 x 106 cal/cc-scc at a
time of 0.2 msec. Curves A and B correspond to two cases with the same
energy input (Iaft). However, they are radically different. Curve A is
sharply bowed away from an r-1 distribution, demonstrating the effect of
the convection term in Eq. (18). It is reculled from Eq. (32) that the initial
vapor velocity scales linearly with Ia and 1s thus an o~der of magnitude
larger in case A than in case B. On the other hand, curve A falls below B
at large r, since the ''conduction length'' of the gas scales az t 1/2, Eq. (2).

No calculations of the radial water vapor ( AXV) distributions are
presented. However, these are quite similar in shape to the temperature
distributions. This is to be expected since it was demonstrated ear.ler

that the characteristic time for diffusion was approximately the same as

that for heat conduction,

= 118=




IV. SUMMARY AND FUTURE DIRECTIONS

A model has been developed for the prediction of the time dependent
behavior of the gas surrounding a water droplet under irradiation by a high
intensity lauser beam. The basic phenomena included in the model are ab-
sorption, heating and vaporization in the droplet and convecticn, thermal
conductior and diffusion in the gas. The model assumes volume absorption
by the droplet, a constant pressure gas, and that the initial vapor velocity
is much less than the local sound speed. The conditions under which these
assumptions are appropriate have been identified.

A computer code employing a fully implicit Crank- Nicolson finite
difference scheme has been developed for the numerical evaluation of the
governing differential equations and a number of preliminary calculations
has been performed. Simultaneously, a steady state analysis of the system
has been performed in order to identify the salient features of the modeled
phenomena over a wide range of the problem parameters. From this ana-
lysis it was demonstrated that the model was not strictly appropriate at
large values of the quantity RZ Ia, where the droplet temperature approaches
the boiling point.

A number of tasks are presently in process on this psogram and re-
sults will be included in the final report. These include:

A) A review of the properties of atmospheric aerosols, including
particle size distribution functions, absorption coefficients, original
nuclei, etc.

B) An extension of the steady state analysis to include convection
cffects.

C) A matrix of computer calculations of the time dependent radial
temperature profiles about a droplet. Paramecters to include particle
radius, laser intensity, ctc.

D) First order estimates of the thermal blooming arising in typical

scenarios.

«19=
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E) A study of the effects of original Aitken nuclei, phase changes
associated with original nuclei material and production of new chernical species.
Possible internal boiling effects with accompanying superheating, fragmenta-
tion, mass transport and shockheating of the air surrounding the droplet will

also be examined.

=20
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